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Dementia of Alzheimer's type (DAT) is associated with devastating and irreversible cognitive decline.
Predicting which patients with mild cognitive impairment (MCI) will progress to DAT is an ongoing
challenge in the field. We developed a deep learning model to predict conversion from MCI to DAT.
Structural magnetic resonance imaging scans were used as input to a 3-dimensional convolutional neural
network. The 3-dimensional convolutional neural network was trained using transfer learning; in the
source task, normal control and DAT scans were used to pretrain the model. This pretrained model was
then retrained on the target task of classifying which MCI patients converted to DAT. Our model resulted
in 82.4% classification accuracy at the target task, outperforming current models in the field. Next, we
visualized brain regions that significantly contribute to the prediction of MCI conversion using an oc-
clusion map approach. Contributory regions included the pons, amygdala, and hippocampus. Finally, we
showed that the model's prediction value is significantly correlated with rates of change in clinical
assessment scores, indicating that the model is able to predict an individual patient's future cognitive
decline. This information, in conjunction with the identified anatomical features, will aid in building a
personalized therapeutic strategy for individuals with MCI.

Crown Copyright � 2020 Published by Elsevier Inc. All rights reserved.
1. Introduction

Dementia of Alzheimer's type (DAT) is a common and severe
neurodegenerative disorder (Alzheimer's Association, 2019; Heun
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et al., 1997). Mild cognitive impairment (MCI), which is character-
ized by noticeable cognitive decline, precedes DAT and 10%e12% of
individuals with MCI convert to DAT every year (Petersen, 2000).
Predicting patients who will progress from MCI to DAT is important
for patient care as well as in patient selection for clinical trials aimed
at treating and preventing Alzheimer's disease (AD) (Roberson and
Mucke, 2006). However, current diagnostic tools for predicting
conversion to DAT rely heavily on clinical interviews and neuro-
psychological evaluations and may not be sensitive to the earliest
changes required to predict future disease development. Thus, new
methodology is needed to better predict disease progression.

With the development of computational methods such as ma-
chine learning and deep learning, there is increased utility of
biomarker-based diagnosis for disease prediction. Numerous
computational methodologies have been proposed to tackle the
problem of predicting whichMCI patients will convert to DAT (MCI-
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converters or MCI-C) versus those who do not (MCI-nonconverters
or MCI-NC) (Basaia et al., 2019; Cheng et al., 2015; Li et al., 2014; Suk
et al., 2017). Of those published, reported accuracy of models is
around 75%e80%. There are, however, several limitations of existing
studies. First, many failed to assess their model using a separate,
independent test data set. It is important to randomly reserve a
portion of the whole data set to be included in the independent test
set (Kuhn and Johnson, 2013). This is the gold standard practice in
the field to evaluate a model's effectiveness and generalizability
(Russell and Norvig, 2016), particularly in the absence of feature
visualization. In addition, previous research has relied on specific
features (e.g., cortical thickness and hippocampal volume) extrac-
ted from raw data to train the model (Zheng and Casari, 2018). This
approach assumes that the chosen feature is the most informative
and may neglect important information inherent in the raw data.

CNN is a deep-learning approach that has evolved in recent years
to produce better classification performance and feature visualiza-
tion than conventional machine learning methods across several
fields (Borji et al., 2019). A CNN trained on raw, whole brain data can
automatically extract the important imaging features and can offer
insights beyond current methods in predicting disease progression.
An end-to-end system,which places themodel's input and output on
each end of the model, requires minimal or no feature extraction,
producing features that are not biased. This approach has not yet
been actively implemented to predict conversion from MCI to DAT.

In the present study, we implemented an end-to-end 3D-CNN
model with transfer learning (Torrey and Shavlik, 2010) to classify
MCI-NC versus MCI-C patients using structural magnetic resonance
images (sMRI). Transfer learning improves the model's performance
by training the model through 2 classification tasks: the source task
and the target task. At the source task, the model is pretrained using
visual information similar to that used in the target task. Through
this task, the model learns generic knowledge that will be helpful in
target classification. At the target task, the model is retrained with
the resource that is directly relevant to the classification objective
using the previously established generic knowledge.

The present study aimed to predict which individuals with MCI
converted (MCI-C) and did not covert (MCI-NC), using a CNNmodel
that has been first trained on sMRI scans of healthy individuals (NC)
and those with suspected AD (DAT). Using the terminology
described previously, we used NC and DAT scans in the source task.
The model learns features that most strongly distinguish healthy
from diseased brains. The generic knowledge obtained from the
source task is transferred to the target task in which scans from
patients with MCI are used. The model is then retrained with MCI-
NC and MCI-C patients’ scans, to extract features that can predict
conversion to DAT. Previous research suggests that the classification
task of NC versus DAT is similar to the classification task of MCI-NC
versus MCI-C (Coupé et al., 2012; Da et al., 2014; Young et al., 2013)
and has been used to pretrain machine learning models in previous
studies (Basaia et al., 2019; Cheng et al., 2015). In this project, we
used a classification task of NC versus DAT as the source task for
transfer learning to our target task model.

Furthermore, we used a novel occlusionmapmethod (Zeiler and
Fergus, 2014) to visualize the features significantly contributing to
our model. Finally, we demonstrate the model's clinical relevance
through the association of the model's prediction output to rate of
cognitive decline.

2. Materials and methods

2.1. Subjects

Data used in the preparation of this article were obtained from
the Alzheimer's Disease Neuroimaging Initiative (ADNI) database
(adni.loni.usc.edu). ADNI was launched in 2003 as a public-private
partnership, led by principal investigator Michael W. Weiner, MD.
The primary goal of ADNI has been to test whether serial MRI,
positron emission tomography, other biological markers, and clin-
ical and neuropsychological assessment can be combined to mea-
sure the progression of MCI and early AD.

The source task used 1406 DAT and 2084 NC scans from 1080
subjects. At the source task only, scans from multiple time points
are included, if available. In the target task, we examined MCI-C
patients with a conversion time of up to 3 years (longer conver-
sion times are examined later) to MCI-NC patients with a clinical
diagnosis that remains MCI for a duration of at least 3 years. MCI
subjects with a duration of MCI less than 3 years without conver-
sion were excluded due to the potential possibility of near-future
conversion. This resulted in 228 MCI-C patients and 222 MCI-NC
patients.

Included in the target task is the single time point sMRI scan at
which an individual first received a diagnosis of MCI. Group dif-
ferences in demographic and clinical history information were
evaluated with one-way analyses of variance and chi-square tests.
Demographic information and clinical scores for the sample are
shown in Table 1. The distributions of conversion time of MCI-C
patients and duration of diagnosis for MCI-NC patients are shown
in Fig.1. Additional clinical information is provided in Supplemental
Table 11.
2.2. Structural MRI data setup for transfer learning

1.5 T and 3T sMRI data were downloaded from ADNI. (Detailed
MRI scanner protocols for T1-weighted sequences by vendor are
available online: http://adni.loni.usc.edu/methods/documents/mri-
protocols/). Preprocessing included skull stripping (Wang et al.,
2011), re orientation, cropping, and padding. This resulted in im-
ages with 158� 196� 170 voxels. The FMRIB Software Library (FSL;
https://fsl.fmrib.ox.ac.uk) was then used to correct intensity in
homogeneity by using an N3 algorithm (Sled et al., 1998) and to
coregister the scans to the Montreal Neurological Institute 152 atlas
by using affine linear alignment.

For the source task, DAT and NC scans were randomly selected
and divided into train, validation, and test sets (Fig. 2). To provide
diverse generic knowledge, 90% of the data (3143 scans) were
assigned to the train set while the validation and test set each
contained 5% of the data (172 and 175 scans, respectively). Analysis
of variances were calculated to confirm that groupswithin the train,
validation, and test set did not differ significantly in demographic
and clinical characteristics: sex, race, ethnicity, marital status, age,
years of education, clinical scores, and genetic information (Clinical
scores and genetic information include CDR, ADAS11, ADAS13,
MMSE, RAVLT Immediate, RAVLT Learning, RAVLT Forgetting, RAVLT
Percent Forgetting, FAQ, APGN1, APGN2, APOE2, APOE3, and
APOE4).

For the target task, MCI-C andMCI-NC scanswere randomly split
into training, validation, and test sets by following the conventional
ratio of 70% versus 15% versus 15% (314, 68, and 68 scans, respec-
tively). Analysis of variances were also calculated to confirm the no
significant group difference between train, validation, and test set.
To avoid data leakage (Wen et al., 2020), which exposes the infor-
mation of the test set to the train and validation set, thereby falsely
producing a higher test set classification accuracy, a single time
point scan was used for each subject. The test portion of the target
task was also ensured to be fully independent from the data used in
both the source task and the training/validation portion of the
target task. Therefore, no subjects in the target task test set over-
lapped with the rest of the samples. This step has been overlooked
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Table 1
Demographic and clinical information within subjects for the source and target tasks

Source task Target task

NC DAT p value MCI-NC MCI-C p value

Ntotal 2084 1406 e 222 228 e

Age 76.49 (�5.92) 76.18 (�7.22) ns 72.25 (�7.32) 74.18 (�6.96) p < 0.05
% Male 49.80% 60.10% ns 63.10% 57.00% ns
Education 16.35 (�2.74) 15.35 (�2.90) p < 0.05 15.97 (�2.85) 15.87 (�2.78) ns
CDRSB 0.09 (�0.30) 5.22 (�2.41) p < 0.05 1.18 (�0.63) 1.97 (�0.98) p < 0.05
ADAS11 5.56 (�2.85) 20.47 (�7.85) p < 0.05 8.61 (�3.41) 13.17 (�5) p < 0.05
ADAS13 8.7 (�1.32) 31.03 (�9.43) p < 0.05 13.77 (�5.33) 21.27 (�6.04) p < 0.05
MMSE 29.04 (�1.21) 22.31 (�3.68) p < 0.05 28 (�1.69) 26.77 (�1.72) p < 0.05

Results are reported as mean � standard deviation. Age and education are reported in years.
Key: CDR, Clinical Dementia Rating Scale; ADAS11, Alzheimer's Disease Assessment Scale 11; ADAS13, Alzheimer's Disease Assessment Scale 13; MMSE, Mini Mental State
Examination.

J. Bae et al. / Neurobiology of Aging 99 (2021) 53e64 55
in previous research and is crucial for avoiding biased learning and
increasing the generalizability of the model.

2.3. Architecture of convolutional neural network

A base model for transfer learning was developed by bench-
marking Residual Network 50 (ResNet50) (He et al., 2016).
ResNet50 is composed of 5 residual blocks. The first block contains
one convolutional and pooling layer, and the following blocks
consist of 3, 4, 6, and 3 bottleneck layers, respectively. Each
bottleneck layer has 3 convolutional layers interconnected through
a skip connection that can smooth the loss landscape and is
beneficial in achieving global optima (Li et al., 2018; Orhan and
Pitkow, 2017). Each convolutional layer receives representations
from the previous layers and transforms them to the deeper level of
feature maps. These feature maps then contribute to the model's
classification decision.

ResNet50, however, has over 23 million trainable parameters,
which is complex enough to cause high variance for the MCI-C
versus MCI-NC classification task. Therefore, we tailored ResNet50
to this task by reducing the number and width of convolutional
layers. The resulting model had narrower and shorter network ar-
chitecture than ResNet50 and was named ResNet29 (Fig. 3). The
number of filters of the convolutional layer in the first convolutional
block was reduced from 64 to 32. The number of bottleneck layers
in the following residual blocks was reduced from 3, 4, 6, and 3 to 2,
2, 2, and 2, respectively. Finally, one additional residual block which
consists of one bottleneck layer was added at the end. The number
of filters of each residual block was divided by 4. In the end, the
model has about 4 million trainable parameters.

ResNet29 was developed as an end-to-end binary classification
model. The model produces 2 prediction scores: the probability that
Fig. 1. Distribution of MCI-C (N ¼ 277) and MCI-NC (N ¼ 514) patients in accordance with y
MCI-C patients who converted to DAT within 3 y were selected for the target task (N ¼ 228
duration of MCI diagnosis is at least 3 y (N ¼ 222) are included in this study. (For interpret
version of this article.)
the scan is classified as an MCI-C subject and the inverse probability
that the scan is anMCI-NCsubject. The sumof these2prediction scores
is always one; if the prediction score for MCI-C is higher than the
prediction score for MCI-NC, then the model decides the given brain
scan is fromanMCI-Cpatient. Similarly, if the prediction score forMCI-
NC is higher than the prediction score for MCI-C, then the model
predicts the given brain scan belongs to the MCI-NC patient group.

All codes were built in Python Keras as a TensorFlow backend.
Experiments were conducted by using 4 NVIDIA P100 Pascal (12G
HBM2 memory). The training time for the source and target task
was 9 and 3 hours, respectively.

2.4. Hyperparameters

Hyperparameters are variables set before training which deter-
mine the network structure and how the network is trained. We
evaluated multiple hyperparameters with the objective of
improving classification accuracy. At the source task, the model was
trained with a cyclically changing learning rate to avoid the model
being stuck in local optima and to promote the model to reach to
the global optima (Loshchilov and Hutter, 2016). The maximum
learning rate andminimum learning rate were set as 1e-2 and 1e-4.
The learning rate was cyclically changing through the entire epoch
of 75 with a unit epoch of 25. To reduce overfitting, ridge regression
and weight constraint with the value of 4e-4 and 2 were used
throughout every convolutional layer, and a batch normalization
layer was also used (Ioffe and Szegedy, 2015). To prevent gradient
exploding, gradient clipping was set as 1 (Philipp et al., 2018).

The model and the weight matrix obtained from NC versus DAT
classification task were transferred to the target task of classifying
MCI-NC versus MCI-C. At the target task, the first 127 of 155 layers
were frozen, which resulted in 2,767,106 trainable parameters. The
ears until conversion and duration of diagnosis, respectively: Upper histogram red box:
). As a comparison with this group, lower histogram red box: MCI-NC patients whose
ation of the references to color in this figure legend, the reader is referred to the Web



Fig. 2. Graphical layout of data division for the source task and target task. The number of scans and patients used for train, validation, and test set is shown. The percentage in
parenthesis indicates the ratio of data size compared with the whole data set, that is, either source or target data set. The number of 1.5 T and 3.0 T scans are also shown in brackets.
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model was retrained with a cyclically changing learning rate from
1e-3 to 1e-5with a unit epoch of 25 through the entire epoch of 125.
Ridge regression, weight constraint, and gradient clipping were set
as 7e-4, 2, and 1, and a batch normalization layer was also used.

All convolutional layers were initialized with “he_normal” (He et
al., 2015). In addition, the “elu” activation function, proposed by
Clevert et al. (2015), was used with the intention of increasing
training speed. Finally, the output layer used the “softmax” activa-
tion function, which produces the output probabilities between
0 and 1, with the sum of the probabilities been equal to 1 (Nwankpa
et al., 2018). Categorical cross entropy was used as a loss function,
and stochastic gradient descent was used as an optimizer.

2.5. Feature visualization method: occlusion map

Feature visualization was completed using an occlusion method
implemented on all sMRI scans that had been included in the test
Fig. 3. (A) Architecture of convolutional neural network (CNN). The original ImageNet Mo
Bottleneck layers were set to reduce the model's complexity and thereby improve the classifi
to reach a global optima (He et al., 2016).
set of the target task. After model training, each sMRI scan was fed
into themodel with a 2� 2� 2 voxel patch (intensity 0) “occluded.”
The patch position was iterated through each voxel with a stride of
2 of the whole 3D brain. Prediction scores were extracted from the
model of each iterated occluded brain, and the prediction score (for
either class, MCI-C or MCI-NC) was recorded at the occluded brain
region. This visualization creates a heatmap of brain regions that
significantly alter the model prediction.

A degree of change in prediction score due to the occluded
portion represents the importance of that region for the model's
classification decision. The brain regions where the prediction score
decreased when occluded versus unoccluded were colored as blue
(blue occlusion map). In contrast, the brain regions where the
prediction score increased when occluded were colored as red (red
occlusion map). The blue regions contribute to a higher prediction
score of the predicted class in the unoccluded image, and the red
regions contribute to produce higher prediction score of the class
del, that is, ResNet50 was scaled down by narrowing and shortening the model. (B)
cation performance (He et al., 2016). (C) Skip connection was used to enable the model
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not predicted in the unoccluded image. To the best of our knowl-
edge, this method has yet to be implemented for classifyingMCI-NC
versus MCI-C.
2.6. Relating mean intensity values of gray matter beneath the
occlusion maps to neuropsychological and cerebrospinal fluid
measures

To validate the model, we calculated the mean intensity values
of gray matter beneath the occlusion map (MIGMBO). Atrophy in
gray matter (both cortex and deep nuclei) is related to the accu-
mulation of amyloid beta plaques and neurofilament tangles
(Bejanin et al., 2017; Jack et al., 2019; Sepulcre et al., 2016). To
identify the meaningful information that contributes to the con-
version from MCI to DAT, MIGMBO for all patients in the test set of
the target task were calculated and regressed with measures of
clinical change, neuropsychological test performance, and cere-
brospinal fluid (CSF) markers.

For clinical measures, we included the rate of change in the
Clinical Dementia Rating-Sum of Boxes (CDRSB), Alzheimer's Dis-
ease Assessment Scale-cognitive 11 item (ADAS 11) and ADAS-
cognitive 13 item (ADAS 13), Mini Mental State Examination
(MMSE), Rey Auditory Verbal Learning Test (RAVLT)dRAVLT Im-
mediate, RAVLT Learning, RAVLT Forgetting, RAVLT Percent
Forgetting, and Functional Activities Questionnaire (FAQ) (Folstein
et al., 1975; Mayo, 2012; Rosen et al., 1984; Samtani et al., 2014;
Schmidt, 1996; Skinner et al., 2012). For CSF measures, we included
Ab, tau, phosphorylated tau (P-tau), Ab/tau, and Ab/P-tau (Detailed
description of CSF acquisition protocols can be found on the ADNI
website: http://adni.loni.usc.edu/data-samples/data-types/).

The output of our generated occlusion maps was divided into 3
bins based on strength of change in the model's prediction, and
each bin was used as a predictor for change in variables listed
previously in amultiple regression analysis. The “low” occlusion bin
is those in which there was only a small change in the prediction
score, that is, a change within one standard deviation. The “me-
dium” occlusion bin is those in which the prediction score changed
between one and 2 standard deviations. The “high” occlusion bin is
those in which prediction score changed greater than 2 standard
deviations.

Y ~ b0 þ b1x1 þ b2x2 þ b3x3

Y ¼ fRate of 9 Neuropsychological measures
5 CSF measures

x1 ¼ m < |occlusion mask| � m þ 1s

x2 ¼ m þ 1s < |occlusion mask| � m þ 2s

x3 ¼ m þ 2s < |occlusion mask|

Where m indicates mean of whole occlusion map, and s in-
dicates standard deviation of whole occlusion map.

To determine the gray matter regions that contribute to the DAT
progression, the blue occlusionmap forMCI-NCepredicted patients
and the red occlusionmap forMCI-Cepredicted patients were used.
The blue occlusion map of MCI-NC patients identifies the brain
regions that make the MCI-NC brain scan look more similar to the
MCI-C brain scan. The red occlusion map of MCI-C patients shows
the brain regions that make the MCI-C brain scan look more dis-
similar to the MCI-NC brain scan. Therefore, the brain regions
covered by these occlusion maps provide information about DAT
progression.
The other occlusion map, that is, the red occlusion map for MCI-
NC and the blue occlusion map for MCI-C, represents the brain
regions that are indicative of MCI-NC that does not progress to DAT.
Therefore, these regions were not used to examine brain regions
that associate conversion to DAT to clinical and CSF measures.

2.7. Relating CNN's prediction score to neuropsychological
measures

To evaluate the clinical validity of the 3D-CNN model, we
examined the prediction score from the earliest sMRI scan of anMCI
patient to the rate of cognitive decline. Of 514MCI-NC and 277MCI-
C subjects throughout the whole conversion and duration years
(Fig. 1), patients whose brain scan was used in training/validating
the model were excluded. This resulted in a sample of 323 MCI-NC
and 86 MCI-C patients. The longitudinal clinical scores (i.e., CDRSB,
ADAS11, ADAS13, MMSE, RAVLTdRAVLT Immediate, RAVLT
Learning, RAVLT Forgetting, RAVLT Percent Forgetting, and FAQ)
from the first MCI-diagnosed time point to the end of clinical his-
tory were used to obtain the month-wise rate of change in clinical
assessment scores. Pearson's correlation between the CNN predic-
tion score from the baseline sMRI scan and the clinical scores'
month-wise rate of change obtained through the first to the last
clinical history were also examined.

3. Results

3.1. 3D-CNN classification results

Classifying MCI-C versus MCI-NC through transfer learning with
a base model of ResNet29 was successful. The loss value of training
and validation set decreased throughout the training epochs
(Fig. 4A). This indicates that the model was well optimized with a
set of well-defined hyperparameters. It produced a test set classi-
fication accuracy of 82.4% and 0.827 area under the curve as well as
0.189 equal error rate value (Fig. 4B).

The test set was composed of MCI-C patients whose conversion
time was between 0 and 3 years. To further look at the models'
prediction performance over a longer conversion time, a separate
MCI-C data set with a conversion time longer than 3 years was used.
In conversion times from 0 to 3 years, 3 to 6 years, and 6 to 10 years,
there were 37, 39, and 9MCI-C subjects, and the samemodel and its
weight matrix were implemented to predict these patients. The
model's sensitivity for these 3 groups was 81.08%, 71.79%, and
55.56%, respectively. The results showed that prediction score de-
creases with longer conversion times (Fig. 5).

Furthermore, we provide the model's separate accuracy on 1.5 T
and 3.0 T sMRI scanner (Table 2). For 1.5 T scanner, 25 of 32 scans
are correctly predicted and report 78.13% accuracy. For 3.0 T scan-
ner, 31 of 36 scans are correctly predicted at 86.11% accuracy.

3.2. Feature visualization

Using occlusion mapping, we identified structural features
recognized by themodel. As seen in Figures 6 and 7, the occlusion of
the hippocampus, parahippocampal gyrus, amygdala, and pons
increased the probability score for MCI-C; the hippocampus, para-
hippocampal gyrus, amygdala, and pons were covered by the blue
occlusion map for MCI-NC and the red occlusion map for MCI-NC.
On the other hand, the occlusion of the nucleus accumbens,
caudate nucleus, globus pallidus, thalamus, cerebellum, and
midbrain increased the probability score for MCI-NC; these regions
were covered by the red occlusion map for MCI-NC and the blue
occlusion map for MCI-C. We note that the occlusion maps for MCI-
NC and MCI-C are complementary.

http://adni.loni.usc.edu/data-samples/data-types/


Fig. 4. Loss history of train and validation data (A) and classification performance (B), that is, area under the curve (AUC) and equal error rate (EER) on test data. Train and validation
loss continuously decreased along the epochs, indicating that the model was learning. The weight matrix that was restored and used to evaluate the test classification accuracy was
where the validation loss showed the minimum. Test classification accuracy reported 82.4%. AUC and EER values are 0.827 and 0.189, respectively.
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3.3. Relating MIGMBO to rate of change in neuropsychological
(clinical) measures

The MIGMBO score from the high occlusion bin predicted the
rate of change in CDRSB, ADAS11, ADAS13, MMSE, and FAQ score at
a significance level of 0.05 (Table 3). MIGMBO was negatively
correlated with the rate of MMSE decline and positively correlated
with the rate of increase in CDRSB, ADAS11, ADAS13, and FAQ score.
In contrast, the MIGMBO score did not show a significant correla-
tion with rate of change in RAVLT scores.

3.4. Relating MIGMBO to CSF measures

MIGMBO scores showed strong correlation with Ab, Ab/Tau, and
Ab/P-Tau with a p-value below 0.05, indicating statistical signifi-
cance (Table 4). For relating Ab/Tau and Ab/P-Tau, all predictors
Fig. 5. The sensitivity to predict patients with conversion years from 0 to 10. The
random guess is 10% as it is the chance of one of 10 different conversion years.
showed a significant relationship. The low, medium, and high oc-
clusion maps all played a crucial role in predicting the dependent
variables. With Tau and P-Tau, MIGMBO showed p-values of 0.0683
and 0.0707, respectively, which approximate statistical significance.
3.5. Relating CNN-based prediction score to rate of cognitive decline

The CNN-based prediction score at the first MCI-diagnosed time
point showed significant correlation with the rate of change in
CDRSB, FAQ, MMSE, and RAVLT forgetting (Table 5). The CNN pre-
diction score was positively correlated with the rate of change in
the CDRSB and FAQ scores and was negatively correlated with the
rate of change in the MMSE and RAVLT forgetting scores. On the
other hand, RAVLT immediate, RAVLT learning, ADAS11, and
ADAD13 did not show a significant correlation with the 3D-
CNNebased prediction scores.

The prediction score produced by the baseline sMRI scan also
showed significant correlation with the rate of cognitive decline
(Table 5). It was positively correlated with the rate of change in
CDRSB and the FAQ score and negatively correlated with MMSE,
RAVLT Forgetting, and RAVLT Percent Forgetting scores.
4. Discussion

Leveraging ADNI data, we aimed to predict MCI conversion to
DAT using a CNN model trained on sMRI scans of healthy in-
dividuals and those with DAT. In so doing, we developed ResNet29,
an end-to-end 3D-CNN which trained, through transfer learning of
these sMRI scans of healthy versus DAT subjects, to predict MCI
patients who either remained stable in their diagnosis or pro-
gressed to DAT. Our model achieved this with a 82.4% accuracy and
also showed the most significant prediction increase from random
guess, 31.7%.

ResNet 29 trained through a novel transfer learning meets the
level of complexity that is required to interpret the heterogeneous
nature of DAT development. Most biomarkers of DAT, including
Table 2
Prediction accuracy on 1.5 T and 3.0 T scans in the test set

Scanner Ntotal Ncorrectly predicted Accuracy (%)

1.5 T 32 25 78.13
3.0 T 36 31 86.11



Fig. 6. Occlusion maps (A) sagittal plane, (B) coronal plane, and (C) transverse plane across all correctly predicted MCI-NC patients. The red color indicates a higher prediction score,
whereas the blue color indicates a lower prediction score. The blue regions indicate importance in predicting MCI-NC and include the pons, amygdala, hippocampus, and para-
hippocampal gyrus. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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atrophy on sMRI scans, are known to nonlinearly worsen with
increased disease severity (Jack Jr et al., 2010).We recognize this is a
limitation of machine learning models which are trained on the
final stage of disease outcomes. However, we note that our base
model, ResNet29, is constructed with a series of convolutional
layers, so that it may extract complex patterns through a series of
nonlinear transformations. The model learns generic knowledge
through NC and DAT scans during the source task, so that it is finely
optimized to determine the degree (expressed as a probability of
belonging to the MCI-C) to which a subject's baseline scan re-
sembles a DAT scan. We additionally note that our model is
designed to individually classify ultimate disease outcome, rather
than reflect the nuances of disease progression.

Compared with previous studies (Table 6), our model achieved
the highest accuracy in classifying MCI-NC from MCI-C. Li et al.
(2014) used a random forest method with weak hierarchical lasso
feature selection to achieve 74.8% classification accuracy using 161
MCI-NC and 132 MCI-C sMRI scans. Cheng et al. (2015) produced
79.4% classification accuracy by using domain transfer feature se-
lection and domain transfer sample selection for extracting features
and support vector machine model for classifying 43 MCI-NC and
56 MCI-C patients. Similarly, Suk et al. (2017) had 74.8% classifica-
tion accuracy in classifying 226 MCI-NC and 167 MCI-C patients by
using a 2D-CNN based on 93 regions of interest as features (93 ROI
for each sMRI and PET and 3 features from CSF are used). By using
3D-CNN, Basaia et al. (2019) showed 74.9% classification accuracy in
classifying 533 MCI-NC and 280 MCI-C patients based on gray
matter tissue probability maps, and Yee et al. (2020) recorded 74.7%
accuracy in classifying 871 MCI-NC and 362 MCI-C scans.

While most previous research did not use an independent test
set, Basaia et al. (2019) assigned a relatively small portion (10%) of
the whole data set as a test set to verify the model's generalized
performance. The most effective splitting ratio of the training,
validation, and test sets is still under discussion, although we set
the ratio as 70:15:15 which is traditionally accepted and success-
fully demonstrated the generalizability of our model.

The ability to predict DAT conversion based on a single time
point MRI is advantageous for the clinical field. While some pre-
vious studies include multimodal biomarkers in their prediction
models, such as positron emission tomography and CSF biomarkers
of disease (Cheng et al., 2015), our model outperformed these
models with high accuracy by using a single time point sMRI scan.
sMRI is often included in routine assessment of those at risk for AD.
It is less expensive than other imaging scans and is minimally
invasive, therefore reducing patient risk. Our model showed 8%
higher accuracy in prediction with 3T than 1.5 T sMRI scans. This
finding is consistent with the known accuracy advantages of higher
resolution images for CNN (Sabottke and Spieler, 2020). Never-
theless, the accuracy of 78% with 1.5 T scanners, which are more
common in hospital settings, is still high, indicating that our model
is clinically implementable. In comparison with studies using
combined modalities, our model produces more accurate



Fig. 7. Occlusion maps (A) sagittal plane, (B) coronal plane, and (C) transverse plane across all correctly predicted MCI-C patients. The red color indicates a higher prediction score,
whereas the blue color indicates a lower prediction score. The blue regions indicate importance in predicting MCI-C and include the midbrain, nucleus accumbens, caudate nucleus,
cerebellum, globus pallidus, and thalamus. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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predictions on DAT progression with less economic burden and
infection risk to the patients.

Several factors contributed to the improvement of the classifi-
cation performance by our model. It was largely empowered by the
architecture of our deep learning model, specifically tailored for the
MCI-C versus MCI-NC classification task. These factors include our
novel transfer learning pipeline using healthy versus AD subjects
that can produce diverse generic knowledge while avoiding data
Table 3
Correlation between MIGMBO and rate of cognitive decline: red MCI-C and blue MCI-NC

Clinical measures Constant Low x1 Medium

CDRSB 1.181 (0.771) 0.046 (0.677) �0.073 (
ADAS11 �2.795 (�0.627) 0.303 (0.943) �0.282 (
ADAS13 �4.007 (�0.770) 0.405 (1.080) �0.372 (
MMSE 3.735 (1.475) 0.013 (0.073) �0.048 (
RAVLT immediate 4.529 (0.783) 0.008 (0.016) �0.060 (
RAVLT learning �3.392 (�1.938) 0.137 (0.282) �0.088 (
RAVLT forgetting �0.365 (�0.164) �0.176 (�1.092) 0.183 (
RAVLT percent forgetting 16.104 (0.585) b�4.596 (0.024) b4.382 (
FAQ 5.463 (1.333) �0.046 (�0.156) �0.057 (

Figures in parentheses are t statistics.
MIGMBO score could predict the rate of change in CDRSB, ADAS11, ADAS13, MMSE, and
predicting rate of cognitive decline.
ap < 0.10.

b p < 0.05.
c p < 0.01.
leakage, along with various engineering techniques such as a
cyclically changing learning rate (Loshchilov and Hutter, 2016).
Finally, we carefully tuned a set of hyperparameters including the
type of activation layers, number of convolutional layers, and their
size and learning rates, through numerous experimental condition
until the model achieved the highest accuracy reported here.
Further, these identified sets of hyperparameters that produced the
best prediction results were validated using the test set which also
x2 High x3 N R2 F-statistic p-value

0.507) c0.007 (0.000) 68 0.275 8.07 0.0001
�0.882) c0.014 (3.251) 68 0.156 3.95 0.0120
�0.994) c0.018 (3.529) 68 0.182 4.74 0.0048
�0.264) c�0.008 (�3.402) 68 0.204 5.47 0.0021
�0.144) �0.008 (�1.476) 68 0.053 1.19 0.3215
0.486) �0.002 (0.233) 68 0.084 1.95 0.1306
1.144) �0.003 (�1.398) 68 0.039 0.86 0.4645
0.031) �0.019 (0.493) 68 0.079 1.84 0.1493
�0.194) c0.018 (4.551) 68 0.260 7.51 0.0002

FAQ score. MIGMBO score from the most significant occlusion map is important in



Table 4
Correlation between MIGMBO and CSF measures: red MCI-C and blue MCI-NC

CSF measures Constant Low x1 Medium x2 High x3 N R2 F-statistic p-value

Ab c4029.0 (3.0) c480.7 (3.4) c�507.3 (�3.5) b�2.3 (�2.2) 26 0.494 7.15 0.00159
Tau �791.4 (�1.3) �76.5 (�1.2) 87.3 (1.3) 0.8 (1.6) 29 0.244 2.69 0.0683
P-tau �93.1 (�1.3) �10.1 (�1.3) 11.3 (1.5) 0.1 (1.6) 29 0.241 2.65 0.0707
Ab/Tau c30.8 (4.1) c3.3 (4.2) c�3.6 (�4.4) c�0.0 (�2.9) 26 0.634 12.7 4.98e-05
Ab/P-tau c388.0 (4.4) c42.1 (4.5) c�45.3 (�4.7) c�0.2 (�3.0) 26 0.665 14.6 1.92e-05

Figures in parentheses are t statistics.
MIGMBO score could predict accumulation of Ab, and ratio of Ab/Tau and Ab/P-Tau. All 3 predictors, that is, MIGMBO score from the least, medium, and the most significant
occlusion map, contribute to the prediction.
ap < 0.10.

b p < 0.05.
c p < 0.01.
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showed the highest accuracy from the numerous experiments:
82.4%.

In addition, our model was provided with a whole 3D brain scan
without specification of any particular feature for training. Previous
studies have limited the input resource through feature engineer-
ing. For example, studies that selected gray matter as the feature for
model training (Basaia et al., 2019) did not consider CSF space or
white matter changes known to also play an important role in DAT
and the pathologic process of AD (Jack et al., 2010; Li et al., 2014;
Weiler et al., 2015). In addition, Cheng et al. (2015) selected sub-
jectively defined “useful” features using domain transfer feature
selection and domain transfer sample selection. Machines trained
with these samples could be biased and thus may not be general-
izable to independent populations. Therefore, unlike feature engi-
neering which limits the information able to be learned based on a
researcher's preassumption of what may be important in classifi-
cation, the presented model learned from every possible feature
available in the image.

It should be noted that the conversion times in previous studies
range from 1.5 (Suk et al., 2017) to 4 years (Li et al., 2014), while one
of the latest experiments uses a 3-year conversion time window
(Basaia et al., 2019). We chose this conversion time for the present
study to directly compare performance with the most current
research. Further, setting the conversion time at 3 years provided a
well-balanced data set between MCI-NC (N ¼ 222) and MCI-C (N ¼
228) (Buda et al., 2018). It allowed unbiased learning by the model
on MCI-C and MCI-NC patients' brains.

To the best of our knowledge, a deep learning model that can
identify anatomical brain regions critical for predicting the con-
version from MCI to DAT has not been demonstrated previously.
Feature visualization methods are able to highlight regions in an
input imagewith strong influence on the classification decision. It is
important as it enables us to understand and validate the reasoning
that has driven the model's classification. Especially in the study of
neurodegenerative disease, it is critical to explain the behavior of a
machine/deep learning model to elucidate the neuroimaging bio-
markers that contribute to conversion from MCI to DAT. State-of-
the-art visualization techniques include Gradient Class Activation
Table 5
Correlation between CNN prediction score and clinical assessment scores' rate of change

CDRSB ADAS11 ADAS13 MMSE RAVLT immed

First MCI sMRI (N ¼ 409) c0.264 0.062 0.039 c�0.146 0.000
Baseline sMRI (N ¼ 409) c0.242 0.008 0.005 c�0.177 �0.011

Correlation between CNN prediction score from first MCI-diagnosed sMRI scan and clinica
correlated with the rate of change in CDRSB and FAQ score and negatively correlated with
score from the baseline sMRI scan and clinical assessment scores' rate of change. CNN pre
and negatively correlated with the rate of change in MMSE, RAVLT Forgetting, and RAVL

a p < 0.10.
b p < 0.05.
c p < 0.01.
Map and Guided Gradient Class Activation Map (Selvaraju et al.,
2017; Yee et al., 2020). However, in the medical field, these
methods are unable visualize the features that contribute to
disease-negative samples (Ardila et al., 2019). Further, feature maps
that directly contribute to the classification decision often have too
low resolution to show fine structural features within the brain.

An occlusion method to feature visualization avoids these
problems and produces finer feature maps (Zeiler and Fergus,
2014). We implemented an occlusion method and identified key
brain structures that contribute to DAT conversion. The occlusion
method is critical in this research as the occlusion patch could
represent structural alteration. A major strength of the presented
model is that the input is naïve to specified brain regions. As the
model uses whole 3D sMRI scan as an input without limiting itself
to predefined regions of interest or features that are obtained from
feature engineering, the occlusion map, too, examined the level of
contribution at the voxel level (2 � 2 � 2) in the progression of
disease. The results that the occlusion map shows are completely
driven by statistical calculations from the ResNet29.

The blue occlusion map presented brain regions that decreased
the probability of being MCI-NC or MCI-C patients when such
structural alteration occurs. For example, the hippocampus was
covered by the blue occlusion map for MCI-NCepredicted patients.
Thus, when information from the hippocampus was missing
(occluded), the model recognized MCI-NCepredicted scans as more
similar to an MCI-C scan; the probability for MCI-NC was decreased
while the probability for MCI-C was increased. Therefore,
morphologic alteration in the hippocampus contributes to the DAT
classification. This aligns with our understanding of the importance
of the hippocampus during MCI stages and progression into DAT
(Ferrarini et al., 2009; Gupta et al., 2019; Lee et al., 2020; Li et al.,
2007). In contrast, the thalamus was covered by the blue occlu-
sion map for MCI-Cepredicted patients—meaning that when in-
formation from the thalamus was missing in the model, and MCI-
Cepredicted patients looked more similar to MCI-NC patients.
Therefore, as far as we can measure, structural change in the thal-
amus does not promote the DAT development within a 3-year
window.
iate RAVLT learning RAVLT forgetting RAVLT percent forgetting FAQ
a0.089 b�0.117 �0.078 c0.243
a0.094 b�0.106 c�0.143 c0.144

l assessment scores' rate of change (the first row). CNN prediction score is positively
rate of change inMMSE and RAVLT Forgetting score. Correlation between CNN-based
diction score is positively correlated with the rate of change in CDRSB and FAQ score
T Percent Forgetting (the second row).



Table 6
Summary of MCI-C versus MCI-NC classification research

Biomarker Conversion time (y) Random guess (%) Accuracy (%) Increase (%)

Proposed model sMRI 3 50.7 82.4 31.7
Yee et al. (2020) FDG 3 70.6 74.7 4.1
Basaia et al. (2019) sMRI 3 65.6 74.9 9.3
Suk et al. (2017) sMRI, Clinical Score 1.5 57.5 74.8 17.3
Cheng et al. (2015) sMRI, PET, CSF 2 56.6 79.4 22.8
Li et al. (2014) MRI, Meta featuresa 4 54.9 74.8 19.9

a MRI features indicate average cortical thickness, standard deviation in cortical thickness, volumes of cortical parcellations, volumes of specific white matter parcellations,
and the total surface area of the cortex, and meta features include demographic, genetic information, baseline cognitive scores, and laboratory tests. 305 MRI features and 52
meta features are used.
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Many subcortical white matter and deep gray structures were
detected as features. As both MCI-C and MCI-NC patients have MCI,
they do not yet manifest significant cortical atrophy on sMRI. These
patients experience cognitive decline related to atrophy in these
regions. (For DAT patients, cortical regions are recognized as a
feature (Supplementary Fig. S14)).

For the quantitative voxel analysis, we segmented subcortical
regions by using FMRIBs Integrated Registration and Segmentation
Tool and count the number of voxels of the blue occlusion map, the
red occlusion map, and whole brain structure. The sizes of 2 groups'
subcortical structures presented similarly; they did not show a dif-
ference between their size at the significance level of 0.1. Surpris-
ingly, however, the blue occlusion map was dominant in the
hippocampus, amygdala, and pons for MCI-NC patients, while was
dominant in the nucleus accumbens, caudate nucleus, globus pal-
lidus, and thalamus for MCI-C patients (Table 7). Therefore, within a
3-year time window until DAT diagnosis, structural changes in the
hippocampus, amygdala, and pons promote DAT development,
rather than the nucleus accumbens, caudate nucleus, globus pallidus,
putamen, and thalamus. We note that the occlusion patch color
(black) used in the occlusion map did not alter the visualization re-
sults, as we found identical results using a white colored patch.

Brain structures recognized by our deep learning model were
consistent with previous research. Previous research has been
published that structural alteration of subcortical brain structures
reflects DAT progression. Many research studies indicate that
morphological changes in the hippocampus and amygdala (Ball
et al., 1985; Convit et al., 1993; Gupta et al., 2019; Lee et al., 2020;
Lehericy et al., 1994; Li et al., 2007; Poulin et al., 2011; Zanchi et al.,
2017) are significant. In addition, the pons was recognized as a
significant biomarker in predicting AD progression. Olivieri et al.
(2019) suggested that structural alteration occurs in the pons
before AD develops (Olivieri et al., 2019).

To further provide content validity on regions identified by the
occlusion map, we used the mean intensity value of gray matter
beneath the 3 occlusion maps. Gray matter is known to be
Table 7
Mean number of voxels beneath the occlusion map

NBlue occlusion map NRed occlus

MCI-NC MCI-C MCI-NC

Brain stem ***13,927 � 4200 17,025 � 2814 17,051 �
Accumbens ***305 � 279 526 � 276 ***655 �
Amygdala ***2608 � 1422 1303 � 1096 ***955 �
Caudate ***4567 � 1157 5408 � 1330 5056 � 1
Hippocampus ***7218 � 3455 3505 � 2633 ***3122 �
Pallidus ***1655 � 749 2174 � 697 ***2363 �
Putamen 5293 � 1717 5680 � 1336 5164 � 1
Thalamus ***6878 � 1901 8210 � 1836 9585 � 2

The number shows mean � standard deviation.
The symbol * shows p-value from t-statistics, which indicate the difference between the n
< 0.05; ***p< 0.01. For MCI-NC patients, the blue occlusion map is dominant in the amyg
accumbens, caudate, pallidus, and thalamus. There is no significant difference in the wh
associated with the biomarkers of AD pathology (Bejanin et al.,
2017; Jack et al., 2019; Sepulcre et al., 2016). Therefore, by
showing the relationship between MIGMBOs and rate of cognitive
decline, verified that our occlusion maps captured clinically
meaningful brain regions. The MIGMBO score of the high occlusion
map showed positive correlation with the rate of change in CDRSB,
ADAS11, ADAS13, and FAQ and negative correlation with the rate of
change in MMSE. Therefore, the higher the mean intensity of gray
matter is, CDRSB, ADAS11, ADAS13, and FAQ scores increase and
MMSE scores decrease more quickly.

In addition, by showing a significant correlation with MIGMBO
and accumulation of Ab, Ab/Tau and, Ab/P-Tau, we confirmed that
the model's prediction aligns with neuropathologic markers of AD
by solely utilizing information from a sMRI scan. All 3 occlusion
maps, which were split based on their degree of prediction change,
could be a useful resource in predicting Ab, Ab/tau, and Ab/P-tau.

Finally, we showed that the prediction scores from our model
were related to worsening of neuropsychological performance
measures over time. Because all scans received a prediction score of
being classified as MCI-C, we calculated the Pearson's correlation
between this score and the rate of cognitive decline for all patients
with MCI. The rate of change in CDRSB and FAQ was positively
correlated with an MCI-C classification. This indicates that as the
confidence in a scan being classified as MCI-C increases, the faster
the increase in CDRSB and FAQ score. In addition, the rate of change
in MMSE, RAVLT Forgetting, and RAVLT Percent Forgetting was
negatively correlated with the predicted MCI-C score. This indicates
that these scores decrease more quickly as the confidence that the
scan should be classified as MCI-C increases.

Aside from the sMRI scan from the first MCI-diagnosed time
point, we used the baseline sMRI scan of all MCI-C and MCI-NC pa-
tients in showing these correlations. Therefore, regardless of con-
version time and duration time of MCI-C and MCI-NC patients, the
model could predict the future cognitive decline of an individual
patient by solely utilizing a sMRI scan from the first visit to the clinic.
Considering that we do not know which patients will suffer from
ion map NTotal

MCI-C MCI-NC MCI-C

3728 16,218 � 2332 30,979 � 7256 33,247 � 3501
303 357 � 255 960 � 324 883 � 266
991 2261 � 1228 3562 � 1053 3564 � 830
632 4721 � 1047 9623 � 2221 10,129 � 1637
2373 6128 � 2768 10,340 � 2882 9632 � 1686
695 1899 � 622 4017 � 1121 4073 � 606

837 4918 � 1312 10,457 � 3086 10,598 � 1890
203 8577 � 2066 16,463 � 3361 16,787 � 1884

umber of voxels in the occlusion map for MCI-C and MCI-NC patients; *p < 0.10; **p
dala and hippocampus. For MCI-C patients, the blue occlusion map is dominant in the
ole volume of brain structure between MCI-NC and MCI-C patients.
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cognitive deficit in clinical practice, these results provide evidence
that the model could be used to foretell future cognitive decline.

In future research, we plan to include all subcortical brain
structures, including substructures of the brain stem and cere-
bellum, as well as parcellated cortical regions to predict the DAT
progression throughout different conversion years of MCI-C pa-
tients and duration years of MCI-NC patients. This regression model
could show the contribution of each brain region in promoting
conversion to DAT and improve personalized preventive medicine.

In conclusion, the current clinical evaluation protocols cannot
accurately predict which patients with MCI will progress to DAT
(Ward et al., 2013). An automated classification system for MCI-NC
versus MCI-C, such as the method presented in this study, offers
promise for informing the clinical prognosis of these patients.
Furthermore, the methods presented here will be useful for iden-
tifying which patients would benefit most from participating in
clinical trials by providing individualized information on the dis-
ease progression, that is, brain regions that cause cognitive deficit
and future cognitive decline. Our methods not only produced the
highest performance in the field, but also avoided problems pre-
viously neglected such as data shortage, high variance, and data
leakage. Our research showed high accuracy in predicting conver-
sion as well as novel visualization features, both critical to
advancing our understanding of conversion from MCI to DAT and
personalized preventive medicine.
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